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ABSTRACT

We analyze the convergence of the spectral vanishing method for both the
spectral and pseudospectral discretizations of the inviscid Burgers” equa-
tion. We prove that this kind of vanishing viscosity is responsible for a
spectral decay of those Fourier coefficients located toward the end of the
computed spectrum; consequently, the discretization error is shown to be spec-
trally small independent of whether the underlying solution 1is smooth or
not. This in turn implies that the numerical solution remains uniformly

bounded and convergence follows by compensated compactness arguments.
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INTRODUCTION

In this paper, we extend the analysis of the spectral vanishing viscosity
method for stabilizing spectral approximations of nonlinear conservation
laws. The spectral vanishing viscosity has been first introduced in [3],
where 1t was shown that L~ —bounded spectral-Galerkin approximations converge
strongly in Lioc(x,t) to the exact entropy solutions of such conservation
laws.,

The analysis is performed on the 2n-periodic inviscid Burgers” equation

2
(1.1) %E-u(x,t) + g§-(2-5§:£lo =0,

submitted to the additional entropy condition

3_

g__(uz(x,t)
ax

3 N
u'(x,t)
3t 5 (32 <0,

(1.2) ) +
which singles out the unique 'physically relevant" weak solution of (1.1).
Both the spectral-Galerkin and pseudospectral-collocation methods for (1l.1),
(1.2) are treated, and to this end we proceed as follows.
Denote by Syu(x,t) the spectral-Fourier projection of u(x,t),
. 1kx . 1 2w ~1kx
(1.3) SNu(x,t) = z u(k,t)e . u(k,t) = +— e f u(x,t)e dx,

k| < o

and let Iyu(x,t) denote the pseudospectral-Fourier projection of u(x,t),
which interpolate u(x,t) at the 2N+1 equidistant collocation points

_ AL
x, =Vvh, h=omy

v = O,ooo,ZN’



. 2N -ikx
(1.8) Loulx,t) = § W0oe™, S =g« ] oux,te V.

k| < N v=0

These two projection operators differ by aliasing error--that is, we have
(1.5)

Iy =Syt &

where the aliasing projection Ay is given by (2]

(1.6) ANu(x,t) = [ 1 u(k+ j(2N + 1), t)]eikx.
|k]<N  j#0

Throughout this paper, we use

(1.7) P = Sy + a-AN

as a concise notation for the two kinds of Fourier projections: either with
a = 0, corresponding to the spectral projection, or with a =1 which corre-
sponds to the pseudospectral interpolation.

We approximate the Fourier projection of the exact solution PNu(x,t), by

an N-trigonometric polynomial, uy(x,t)

(1.8) uN(X,t) = Gk(t)eikx,

RE

which is determined by the approximate evolution equation

(x,t) + 2---(P

) 1 2 3 3
(1.9) 3t Uy % EN 7 Uy (x,t)) = ¢ % (QN 3% UN (x,t)).



The expression on the right~hand side of (1.9) represents the spectral vanish-
ing viscosity term. Here Qg 1is the spectral viscosity operator which is
defined as a convolution with a symmetric viscosity kernel QN(X),

(1.10) Q3= uy(x,8) = Qu(* o= u (x,0),  Qu(x) = Q)e,

el

In the spectral case where a = 0, (1.9) amounts to

] 3 1 2 ] 9

2 z = =g 2 * o

5t U0 ) + a3 [Sy 5 up(x,0)] = & o= [0p(x)* 5 u (x,t)],
consisting of a nonlinear system of ordinary differential equations for the
Fourier coefficients, uk(t), which are coupled through the standard spectral
convolution treatment of the nonlinear term. The interpretation of the scheme
(1.9) in the pseudospectral case where a =1 leads us to

3 ) 1 2 ) )
3t U B) Iy uN(x’t)]|x=xv= e 3x(Q(x)* 53 uN(X’t)]lx=xv’ 0<v <N,

and consists in a complete statement of a standard collocation method with a
pseudospectral treatment of the nonlinear term.

In both the spectral and pseudospectral cases, the spectral viscosity
operator can be efficiently implemented in the Fourier rather than the physi-
cal space, i.e.,

3 3 _ 9 2 _ . 280 \% o ikx
e 5% (Qq = uN(x,t)) =€ as [QN(X)* 5 uN(x,t)] = —¢ |k§<N k Q(k)uk(t)e .

An essential ingredient of our spectral viscosity operator, Qy, is that -it



should operate only on the high portion of the spectrum, in order to retain

the formal spectral accuracy of the method. Hence we make

ASSUMPTION 1I: There exists a constant m = m(N) < %-N, such that

k) = 0, x| < m,
0 < Qk) < 1, m< [k| < 2m,
k) = 1, oam < |k| < N

Then, with Qy = I - R, we can rewrite (1.9) as

3
ot

1 2

(1.11) uy(x,t) + -g; (B 5 us (x,0)) = ¢ %; [(1-R) %-; uy(x, 01,

where the corresponding kernel Rm(x),

ikx

(1.12) R (x) = R(Kk)elkX,

s
is a trigonometric polynomial of degree < 2m, with Fourier coefficients

‘f{(k) = 1, |k| < m,
(1.13)

0 < R(K) < 1, m < |k| < 2m.

In order to guarantee the uniform boundedness of our approximation, uN(x,t),

we shall need to control the size of this kernel; we therefore make



- ——

e T ——

ASSUMPTION II: There exists a constant such that

(1.14) IR (o) < Const.logm.
m 1 —
L (x)
We remark that the assumption of a logarithmic upper bound for the size of
Rm(x) is plausible, since typical applications involve R(k) which de-

crease monotonically to zero and (1.14) is automatically fulfilled in such

cases; consult Appendix A. To obtain, with the help of Assumption II, the
promised uniform bound on uN(x,t), necessitates L -bounded initial data,

uN(x,O). For technical reasons we shall need the slightly stronger

ASSUMPTION JII: There exists a constant such that

HuN(x,t=0)ﬂ - < % lak(t=0)|.S Const,.
L (x) ~ |k[<N

The spectral viscosity term on the right of (1.11) depends on two free
parameters: the viscosity amplitude e = e(N) and the effective size of
the inviscid spectrum m = m(N). These two parameters should be chosen to en-
sure the convergence of the method. In [3] it has been proved that in the ab-
sence of such viscosity term, € = 0, strong as well as weak convergence to
the exact entropy solution fails.

The main result of this paper asserts

Theorem 1.1: Consider the Fourier approximation (1.11) of either

spectral or pseudospectral type. Let the spectral viscosity in (1.12) -

(1.14) be parameterized with (e,m) as follows




(1.15) € = e(m) ~ 6 ——b ., m

2
m e lIR (o)I
m Ll(x)

in

m(N) ~ Const.NB, 0 <BK %-.

Then uy(x,t) converges boundedly a.e. to the unique entropy solution of the

conservation law (1.1).

Let us examine for example the viscosity operator Qg =1 - S . Here

R (x) coincides with Dirichlet kernel D,(x), where [5, Chapter II]

1
sin(m + %)x
D_(x) = eikx = L 2 s ID_(e )il ~ A logm,
m 2 1 m 1 2
[k[<m sin % x L(x) =

2

so that Assumption II is fulfilled and Theorem 1.1 yields

Corollary 1.2: Consider the Fourier approximation

(1.16) g_E u(x,t) + gg (PN%ué(x,t)) = ¢ g-; [(x-s) % ug(x,0)1,

with

N28

- ~ B 1
Togk ° m = m(N) Const.N", 0<B<'Z;-°

(1.17) € = €(N) ~ Const.

Then uN(x,t) converges boundedly a.e. to the unique entropy solution of the

conservation law (1.1).

The spectral portion of this result (a = 0), was derived in [3, Theorem

4,1 under the assumption that the numerical solution uN(X,t) remains uni-

formly bounded. The extension of Corollary 1.2 includes the pseudospectral



approximation (a = 1), and in addition, thanks to the slightly more stringent
parametrization than that of [3, Theorem 4.1), contains a proof of the previ-
ously assumed L”-bound.

In the last example the viscosity symbols a(k) were discontinuous
at |k] = m. It was suggested in [3] that the use of viscosity operators
Qy with smoothly varying symbols would be advantageous for the spectral vis-
cosity method in (1.9). As our second and final example we consider the

simplest viscosity operator of this type, namely

k) = 0, k| < m,
oy =kl k] < 2m,
k) = 1, 2m < |k| < N.

This kind of spectral viscosity is intimately related to the Fejer operator
1 m—1

n - Sk: if we let X (x) denote the corresponding Fejer kernel [3,

k=0
Chapter III1]

. 1
ik 81n.7 mx 2
Km(x) = (1 - lgl)e Xz ?a-[———-jf——J , HKm(-)H 1 =1,
k| <m sin-f X L (x)
then for Qy =1 - R, we have Rp(x) = 2K, (x) - Kp(x). Hence the kernel

associated with

1 2m-1
Rm = 2F2m - Fm = o z Sk
k=m
is Ll—uniformly bounded,
IR ()1 < 2R, (1 + 1K (o)l <3,
m Ll(x) — 2m Ll(x) m Ll(x)



so that Assumption II is fulfilled and Theorem 1.1 yields

Corollary 1.3: Consider the Fourier approximation

(1.18) & u (x,t) + 3 (P luz(xt))=ea—[(1—l-2‘§-ls)E—u(xt)]
. 3¢ N 3x N2 UNE 3x OIS S T
with
28

(1.19) e = ¢(N) ~ Const.N °°, m = m(N) ~ Const.NB, 0<8 <-% .

Then uN(x,t) converges boundedly a.e. to the unique entropy solution of the

conservation law (1.1).

The paper is organized as follows. 1In Section 2 we derive a couple of
basic Lz—type a"priori energy estimates. 1In Section 3, these estimates are
used in order to study the spectral decay rate of the Fourler coefficients.
This in turn enables us, in Section 4, to obtain L a priori estimate on
the numerical solution. Finally, based on the a priori estimates prepared in
Sections 2, 3, and 4, Theorem 1,1 is proved in Section 5 along the lines of

[3], using compensated compactness arguments.

2. L2-TYPE A PRIORI ESTIMATES
We consider the approximate Fourier method (1.9) which we rewrite as
9 9

1.2, _3 _ 1 2 3 3 B}
(2.1) —a-E uN+$<- (7 UN) = —a; [(I PN) 7UN] + € -a—x [QNﬁuN] =1 + II.



e —

In order to prove the convergence of this method we need a couple of a priori

estimates on its solution. To this end, we multiply (2.1) by uy

] 1 2 1 3
Wt Gw T

Q

(2.2)

(-3

1 2 ] -
— [(1 - PN) 3 uN] + EUN % [QN 3—}{-‘ UN] = II1 + 1V,
and integrate over a 2m period: the integral of the second term on the left

vanishes by periodicity, and after integration by parts for the second term on

the right we are left with

(2.3)
21 2w
1 2 ] 9 ] 1 2

Using (1.7) and the fact that I - Sy 1s orthogonal to our N-space, we find

that the right-hand side of (2.3) equals

v 1 2 m oy 1 2
f uN TX [(I-PN) Vi uN]dx = —ae f uN TX [AN - uN]dX = =3ae

1
)
0 0 . lP'SN

~ 2
u_pip(AN.Z uN)P,

and by the aliasing relation (1.6), this does not exceed

fz" S 1P s ullax = 2 Z tpu_u u_ < Jal Z la | la|la_|
! Uy 7% N)f uyldx = pupu u ___—-2-—--| up uq u |-

.2|P+q+rf=2N+1 qQr prq+r|=2N+1

In view of |p + q + r| = 2N + 1, at least two of the three indices |p| < N,

lql <N and | x| < N are greater in absolute value than g-, and hence
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e eyl wiae < 4l eIl | Tl 3, |14 |
oy N 0 R R . PHIu, Tl Yy (ons1) - (ptq)
<l 5Kql< N
N R 1/2 - 1/2
4]al Z 2 2 2 2 Z 2
< N [N P |up| . q |uq| ] .[N . lui(2N+1)—(p+q)| |
5<|p| <N 5<ql <N HKlplN <[qf<y

Consequently, since Q(p) = Q(q) =1 for lol,]4ql Z:% , the expression on

the right of (2.3) can be upper bounded by

2w
] 1 2 4la 9 2
(2.4a)f u,, —I[I-P )= u. ldx < —l7l slQ, =— u (s,t) eflu, (eo,t)I .
0 N 3x N2 °N —-Nl 2 N ox N Lz(x) N Lz(x)

Moreover, since 0 < &(k) <1 we have for the second term on the left of
(2.3)
2w 3 3
(2.4b) € é = uN(x,t)QN = uN(x,t)dx =
2~ ~ 2 3 2
=g k™ Q) |u, (£)]|° > el u, (e, .
Ik%_SN k - N 3x N LZ(X)

Inserting this together with (2.4a) into (2.3) we end up with

(2.5) %g_t""n("t)"zz + [e - il-;-zl-lluN(-,t)ll L [ ,‘;;_uN(.,t)nz2 < 0.
L (x) N L” (x) x L (x)
Thus, as long as
(2.6) e - 41‘32 hug (e, 00, >% ,
N L°(x)

we obtain
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d 2 3 2
(2.7) u, (e, t)H + elQ u, (o, ) < 0.
dt N Lz(x) N 3x N Lz(x) —
In particular, (2.7) implies that for uN(x,t) =) uk(t)eikx we have

il <
our first L2—type a“priori estimate

I;k(t)|2 S_Eg, By = NuN(-,t=0)H 9 < Const,.

2
(2.8) nuN(-,t)n 5 = 20x) = 0

L™ (x) |k%§N

Hence (2.6), (2.7) and consequently (2.8) prevail for all time provided (2.6)
is valid at t = 0, i.e., we require that in the pseudospectral case where a
= 1 we shall have

(2.9) e(N) > 8E0-N'1/2;

indeed, Assumption II tells us that this requirement is fulfilled, at least
for sufficiently large N, for
N28 -1/2

(2.10) e > Const. Togh > 8+E N R 28 <

Nlr—-n
.

Furthermore, temporal integration of (2.7) then gives us the second a“priori

estimate

) 2 24 - 2 2
(2.11) €HQ u_l =e [ E k“]Q(k)u, () |“dt < J~, J. < Const
N3x N Lioc(x,t) t m<|k|<N k -0 0 -

00
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3. THE DECAY RATE OF THE FOURIER COEFFICIENTS

Our Fourier approximation (2.1)

d 3 1 2, _ 2 _ 1 2 9 d
3T U T ax T U T ax [T Py gouyl +e g (Qp 5 uyds

(3.1)
. _ 9 1 2
consists of two kinds of errors. The first term, T = % [(1 - PN) 5 uN],
represents the discretization error, which includes spectral truncation
d 1 2 .
errors — [(1 SN) 7 uN] as well as additional aliasing errors
) 1 2 . X

a.§§'[AN 7'uN] in the pseudospectral case. In this section, we borrow from

Kreiss [1], in order to show that due to the second error term of spectral
- . 9 )
vanishing viscosity, II = € % [QN 3% uN], there is spectral decay of the
Fourier coefficients luk(t)l, || > %-N, and therefore, that the discretiza-
tion error is spectrally small.
We begin by taking the I - Soy projection of (1.9): for k > m we have

by Assumption I, (I - Sok)Qy = I - Soi, and hence

1 2]

3.2)  LJa-s,ug+a-s, 03 [pe L ud] = e da-s, 0 w], m<r<nw

Multiplying by (I - Sop)uy and integrating by parts over a 2y-period, we

find that

14d 2
¥ (I - SZk)uN(-,t)u

Lz(x)

(3.3)
-1 jzn (1-s., )3 - (1-S,, )P uldx - eb(I-S, ) (o, 017
"7 2% ’3x N ok /P NUNeX T 2k ’3% Un' "ot 120y
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The first integral on the right does not exceed

1 2 (1-s. ) 2 (I-5... )P u2dx <
i'é ok’ Ix N 2k’ NUNGE 2
(3.4)
1 3
<= 1(I-S,, Yo— u (o, t)H “1(1-5, )P u 200 o .
23 2k’3x UN 1205 NN 1 2(x0)

In order to estimate the second term of the last product, we will make use of

the following lemma whose proof is postponed to the end of this section.

Lemma 3.1: Let fN S fN(x) and gy = gN(x) be a couple of N-

trigonometric polynomials. Then, for any 0 < 2k < N we have

n(I- 5, )p (f g I <
NENTT L 204y =
(3.5)
< 3—.[ann 5 -H(I—Sk)g— gyt o gyl , -u(I-skyg_ Fxl o ].
~ Yk L (x) N L%(x) L7(x) * VL)

Lemma 3.1 with fN(o) = gN(-) = uN(-,t) implies

(3.6)n(1-32k>pNu§(.,t)u ) <A pu (e, ,  *1(1-S )5—-u (,01 , .

L(x) ~ vk N L°(x) L7(x)

Equipped with (3.4), (3.6), and (2.8) we return to (3.3) to find that

(3.7) 1d y(1-s. Yu (,t)02 - en(1-s.. ) u NE SO+
7 dt 2k’ N Lz(x) 2k 9% L2(x)
+ 2 Ege0(I - S,,) %—-UN(-,t)H , M-S ) e on,
vk X L7 (%) L2 (x)
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which brings us to

Theorem 3.2 For any integer s >0 there exists a constant Cs

Const(s,Eo), such that for sufficiently large N, N > Zs-4m, we have

2
,  SCo[(=2)P+ (1+ L ym(sr1) m4%eenTe

(3.8) (I - S du (=,
N b L(x) evN e/N

2

Proof: Let Ek(t) abbreviates the quantity

(3.9) E (t) = 01(I - S du,Ce,t)i .
k kN 12(x)

In view of the inverse inequalities

E,, (£) < (L = §,) 4= w (o, , < Ny, (£),

L7(x)
it follows from (3.7) that Ek(t) satisfy
d 2 28N
. _— - + .
(3.10) 35 Egp (F) < —hek e () E (), m<k<N

43

Temporal integration yields that for any 0 < tg < t we have

2 2
2E.*N° t e —hek“(t-t )
(3.11) £, (1) < —0— [ T4 (T (a0 + e 5, (t),
2k - k 2k 0
Yk T=t,

and therefore

EO-N2 -4ek2(t—t0)
(3.12) E2k(t) < * max Ek(r) + e -EZk(tO).

~ 2evkek toﬁTﬁF
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The a“priori estimate (2.8) implies that

max E, (t) < max E. (1) < E_.,
ocr¢e 2 ocr¢e 00— 0
and in view of (3.12) we have
2
E.*N 2
(3.13); By () S —— o Eg + e K Ep k>,
2evkek
If we choose tO =-% in (3.12) we find that
2
E.*N 2
0 =-2ekt t
(3.14) E2k(t)-5 E;—;Tzf.- max Ek(T) + e 'EZkCZ)’ k> m,

t
Zﬁ:ﬁ;
and following Kreiss [l1], we can use this to improve our estimate (3.13).

Namely, for k > 2m we can use (3.13); to upper bound the terms pax Ep (1)
T
and E2k(§) on the right of (3.14), and obtain the improved bound

2 2

8E +N 2 8E *N ) e
E, (t) < ( ) « E, + (1 + e ‘E_, k > 2m.
2k VR k2 0 eVRek? 0

Now we can repeat this process, and by induction we obtain that for k > 25em

we have
85E N2 g+1 85E N2 s ,-s+1 2
0 0 -4 ekt
(3.15) Ep(8) S (———) <Ej+ (1+ —) e °E .
2k — evkek 0 evkek 0

Verification of the induction step is left to the Appendix. Finally, (3.15)

implies that for sufficiently large k =-§ > ZS-m, we have
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1(I - S, Ju, (e, ) = E (t) <
N N ? 2 N —
Vi L°(x) —2—
328 +E . s+l 328 (s+1).
< ( 0y e+ (1 + 0) =4 8NtEo,
eV N evYN

and 3.8 follows.

Our parametrization in (1.14),(1.15) implies that for sufficiently

large N we have

2-28

5D on2e > Const. —h ot > N 2., 0<28 <,
45t 1ogn
g
as well as
1 logN 1
—— < Const. < — 0 <y XK ~ 28,
YN T (’ZI -28) — NY z

and Theorem 3.2 tells us that

Corollary 3.3t For any integer s >0 there exists a constant Cg

such that

- -N3/2,
(3.16) (T = S )u (e, t)l <c o(NS 4 Ny,
2
Corollary 3.3 indicates the spectral decay of the Fourier coefficients

Ia(k)l with wavenumbers || Z.é'N’ which in turn implies a similar decay

for the discretization error, I, on the right of (3.1). For the latter we
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have

2
(3.17) “(I_PN)—IZ u;(',t)“ 9 = II(I—SN)—IZ ufl(.’t)llzz + aZIIAN -]2'- u;

(-,t)n22 .
L°(x) L7(x)

L°(x)

The Fourier coefficients of the two expressions on the right are given

respectively by

1 2 1 ~
(I - 8.)5 u,(e,t)), == :E: u (tu (t), |k| >N,
N2 "N k 2 ptq-k=0 p q

/\ " "
(Ay 5 6o(e,t), =5 2: a(©u ©), [k <N

|p+q—k ' =2N+1 P

In both cases, either Ip| > g or lq] > g H hence each one of these

coefficients can be upper bounded in a standard fashion to yileld

1 2 2 2 1 2 2
I (I-8y )y uy (e, t)l +a”llA u (e, t)I <
N7 UN 120x) NZ YN L2000
T (14ad)e] la () 12e] 5 lu_(0)[?] < 4EZeNen(T-8 Du (o, 007,
N< |k |<2N lq<n 4 N P ~ L(x)
=" = o> Z

and by (3.17) this is the same as

(3.18) u(I—PN)% ug(-,t>u s SN (T - S u (e, 00,

L (X) - f L (X)

Corollary 3.3 together with 3.18 show that due to the presence of the spectral
viscosity term II on the right of (2.1), the discretization error I decays to
zero at a spectral rate independently whether the underlying solution is

smooth or not. We state this as
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Corollary 3.4: For any integer s >0 there exists a constant CS

such that for sufficiently large N we have

3/2
1 2 - -N77 %
(3.19) T = [(I-P)5 uN(-,t)]uLz(x) < cs./ﬁ (N% + e 5, s>o.

We close this section with the promised

Proof (of Lemma 3.1): Starting with the identity

ngN = fN(I—Sk)gN + (I-Sk)fNOSng+ Ska-SkgN

[s, £

and subtracting from this (I - SZk)PN K N.Sng

=@ - SZk)[Ska-Sng] z 0,

we can write

(1-8,, DB (£y8y) = (I8, )P [£(1-8, Ig +(I-5, )f =5 g\ 1.

The quantity inside the right brackets is a trigonometric polynomial of degree

{ 2N and hence, by Parseval relation, its L2(x) norm dominates the L2(x)

norm of its Py projection, i.e.,

fooe ] <
Lz(x) .

u(I—SZk)PN(f )] S_HP

g
N®N Lz(x) N

(3.20)

< NE(1-8 gy + (1-8 )E S, gl o
L7 (x)

The norm on the right of (3.20) is upper bounded by
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<

"fN(I—Sk)gN+(I—Sk)fN'S I 9 <
L°(x)

kBN
(3.21)

oI (I-S, Y I . .

el
N k?"N L (x)

9 -H(I—Sk)gNH -

+ g |
L2 (x) S N2

(x)

Finally, for hy equals either fy or gy we have

H(I-s )hl o < % Ih ] <

L(x) " [p[>k P ~
(3.22)
1 41/2 2,2 1271/2 2 3
< — . p |h_| < — I1(1-S, )= h_I
—'[Ip%>k pz] [Ip%>k P ] vk k7ox N Lz(x)

and (3.5) follows from (3.20), (3.21), and (3.22).

4, L A PRIORI ESTIMATE

The classical energy method can be used to show that the solution of
(2.1) remains uniformly bounded during a small finite time. The method
reflects the fact that for sufficiently smooth initial data, say with

2
E—E—uN(x,t=0) which are L2-bounded, the process of shock formation takes a

9x
finite time, during which 2—-uN(x,t) remains uniformly bounded and a

ax
couple of Sobolev norms could be a”"priori estimated during that time.
For a brief initial time intervals, we can do better with regard to the

smoothness of the initial data, as told by

Lemma 4.1: Consider the Fourier approximation (1.11) - (1,.14) with

initial data uy(x,t=0) such that Assumption III holds, i.e.,
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(4.1) ]G (t=0)| < Const,.
ﬁg« « -
Then for t S-% we have
- 1
(4.2) ha (e, )0 . <2 . lu, (£=0)], t { e .
N L(%) |k%ﬁN k 8Const0 N

Proof: The Fourier transform of (1.9) reads

(4.3)
d -~ ~ ~ A ~ 2A ~
S_u (t) +ik[ ) u (t)u (t) + ae Z u (Bu (£)] = -ek“Q(K)u, (t).
dt 'k [p+q=k L |prq-k|=2n+1 P 9 ! k

Multiply the real (imaginary) part of this by sgn(Reuk(t)) (respectively,
sgn(Imuk(t))) and sum over all k“s: since the right-hand side is negative we

obtain after summing both parts

q - - n
— lu, (£)] < (1 + |a])e2Ne u (t)]. u, ()] <
5 01 < e § 101 ] T 0] <

(4.4)
- 2
< 4N luk(t)l) .
| k]
Integration in time yields
tug (e, 01, < ()] < L : |4, (£=0) ],
L (x)  |k[«w 1-4Nte lu (=0)]  [k]<N

] <

and (4.2) follows.
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To obtain L’ bound for later time, we shall carefully iterate on

the LP(x) norms of uy(x,t). To this end, we multiply (2.1) by pug_1

and integrate over the 2n—-period, obtaining

d p p pt+l x=27

—lu (e, t)H +—=—u. (x,£)| 7" =

dt N Pexy PN x=0

(4.5)
2n 2n
-19 1 2 -1 3 3
= p-f ug —;-[(I—PN) i-uN]dx + pof ug £ 5§'[QN % uN]dx.
0 0

By Corollary 3.4, the discretization error is negligibly small: using (3.19)

1 2
N 7 Uy
{ 2N, we have for any s > 0

and the fact that (I - P is a trigonometric polynomial of degree

(4.6) 13 ((1-p, ) w2(e,0) 10 <
X N)T N Pex)

/2N‘-u§§-[(1—pN); uﬁ(.,t)]uLz(xyg cSNZ.(N'S+e'

Therefore, by Holder inequality, the first integral on the right of (4.5) does

not exceed

2n

-1 3 1 2 p-1 9 12
pef uP [(I-P )wm usldx < peliud (e, t) el (I-P drus(e,t) ] <
o N ax N’Z "N = N L9¢x) §x[ N“2°N ] LP(x)—
4.7)
3/2
. . 0 SR 2-5 ... 2 =N " et i_ l.=
<p lIu.N( ,t)lle(x) cS (N® "HN%e ), 5 + 5 1.

The second integral on the right of (4.5), with Qg = I - Ry, equals

2

2n p-1 9 3 2% p=2 BuN 2n p-1 82
p-é uy e?i[(I—Rm)FiuN]dx = —ep(p—l)-g uy (Ei_) dx - ep-é uy S;T(RmuN)dx'
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The first term on the right hand side is negative for any even integer

p > 2 for the second term we use H;lder inequality as before, obtaining

y IZN p-1 a2 p-1 a2
(4.8a Ep* — (R )dx £ ep"u (s, ol (R ) .

0 N 3x2 L P (x) 8x2 n'N P(x)
Now, since RmuN H Rm(x)*uN(x,t) is a trigonometric polynomial of degree

< 2m, (consult (1.12)), we can estimate the LP(x) norm of its derivatives

as follows [5, Chapter X]

2

)

I—=(R u )l < (zm) -nR (o )*u (o, )l <
8x2 muN 1P (x) Lp(x)—

(4.8b)

2
< 4m™ IR (-)H o] (- £t .
- m 7 Lk B LP (%)

Using (4.8a) and (4.8b) we conclude that the second integral on the right of

(4.5) is upper bounded by

(4.9) p-f2" uN “1ed_ 1. & 4 Jdx < 4peemelR (o)1 huyg (e t)np
. — . . . . . .
0 Bx N ax N — m Ll(x) L (x)
We recall that according to our parametrization (1.15), emzouRm(-)ﬂ 1 £ a.
L (x)

Hence, equipped with (4.7) and (4.9) we return to (4.5) to find that

1
pluy (e, )P ot <
P(xy O LP(x)”
3/2
2-s 2 -N ot
phu (o, t)0P7" [baelu (o,t)0 + C (N + N )],
N 1P (x) N P(x) °

or, after division by the common factor of pnu (e, t)lIp 1 s
LP(x)
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3/2
(o, t)H + CS-(N2 SinZe N ety

< 4aellu
- LP(x)

d
— lu,_(=,t)I
dt uN Lp(x) N

Finally, we integrate in time obtaining by Gronwall’s inequality that for

any 0 < tO.S t,

(4.10)
4a(t—t0) 9-g —N3/2°t0
lug (e, e)0 <e [ray et + C (N7 Te(t-t )+ /N - e )]
LP(x) LP(x)
. : i _ 1
Letting p even tends to infinity, then (4.10) with ty = tO(N) EEEHEEaﬁg

gives us

bat 2-s -Const.vYN
(4.11)  Nu (o, )0 < e e[y (ot ) +C (N %t + /N e )]
N (x) ~ uN 0 L™ (x) s

and together with Lemma 4.1 we conclude with the desired L~ bound, namely,

Theorem 4.2: Consider the Fourier approximation (1.11)-(1.14). Then for

any s > 0 there exist constants a >0 and CS such that

(4.12)
tu (o 01 < Mt 4 lu (£=0)| + C__ o (N Set + /N ¢ 000SE-"Ny 1
N P )" s+2
L (%) k<N
Remarks: 1. We observe that the exponential time growth in (4.12) does

not exceed 4o where a ~ emz-nR ()1 1 £ Const.
L (x)
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2. The a“priori LP(x) estimate derived in (4.10) is valid for arbitrary L2-
bound initial data. We note, however, that the resulting 1 bound in such
case is not uniform with respect to the initial time tg. That is, with arbi-

trary L2-bounded initial data, the solution Hu,(e,t)l may still grow

N

[ ]

L (x)
like O(/N). The point made in Lemma 4.1 was that with slightly strengthened

regularity assumption on the initial data

Iuk(t=0)| £ Const,

e

this growth is bounded for a brief time interval of length ~ %-, after which

the spectral viscosity becomes effective and guarantees the L” bound later

on.

5. CONVERGENCE TO THE ENTROPY SOLUTION
We follow [3], using compensated compactness arguments to conclude that

un(x,t) converges to the entropy solution of (1.1), (1.2).

Proof: (of Theorem 1.1). Consider the four terms on the right-hand side
of (2.1) and (2.2). Using (3.18) together with (2.11) along the lines of [3,

Lemma 3.1], we find that the term I satisfies

_ 9 1 2
1T = o [(I-P )5 ug (e, 0010 <
Hloc(x’t)
(5.1)
< ||(1—PN)-IZu§(-,t)n 9 < 4E0-JO . 1 > 0.
Lloc(x,t) - Ye(N)*N N»>w

Also, by the a“priori estimate (2.11) we have
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NIT = <

[0 u ]||
9% N 5_ N 1 (x ey

(5.2)

< e“QN T u "Lloc(x’t) i VE(N; d JO ;I-:'* 0.

Thus, in view of (5.1) and (5.2), the terms I and II on the right of (2.1) be-

-1
long to the compact of Hloc(x,t).

Next we note that since Qy + R, = I we have

9
Ve ua ul 2

loc

< Ve NQy a + /e ui- (RmuN)u 5

uyl 2 09X *
loc(X t) Lloc(x’t)

(x,t)

The first term on the right is bounded by Jos the second one—--being the

derivative of a trigonometric polynomial of degree < 2m, does not exceed
VE « 2m -HuNﬂ £ Const. Consequently,

1oc(x t)

(5.3) Ve “5_'UN" : < Const.
loc X t)

Equipped with (5.3) we now turn to consider the right-hand side of (2.2). For

the third term in (2.2),

) _ 1 2,
III = uy »= [(T =P 5 uyl =
(5.4a)
9 1 2 9 1 2 _
-s—x- [UN(I - PN) —2' UN] - ﬁ uN ‘(I - PN) -2— U,N = III]_ + IIIZ,

we have by Theorem 4.2 and the estimate (5.1)
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ITII, = .g? [ug (T - PN)% qu]u -1 <
(x,t)
(5.4b)
1 2 1 2
< u (I - P) < lu (-,t)ll o (I - P )= u b — 0,
< Hay N7 Uy i ey N () N2 NLioc(x’t) Now

and together with (5.3) we also have

] 1 2

||]:]:[2 = -a—i uN o (I 2 uNII _<_
1oc(x’t)
(5.4¢c)
a 2 1
< Ve gyt L PN) ugl 5 < Const.4E J e —— — 0.
Ll oc (x,t) ve Lloc(x,t) e(N) VN N+

Finally, for the fourth term in (2.2),

9 3
euy 5% (Qq 33 ) =

v

(5.5a)

3 5 )
€ nx% N0y 3% Uy 'ET“NQNT uy = 1V, + 1V,

we have by (2.8), (2.11) and the uniform bound in Theorem 4,2,

(5.5b) 1IV, = € [u Q uy I _ < ug (o, e Wwe) + J, —* O,
1 NN 5_' Hl1 (x,t)" N 1°(x) 0 Novoo
oc
while IV, = -€[Q d u ]2 + e(I-Q )a u,.*Q d_u satisfies
27 N9x N ‘N’8x N N 3x N
(5.5¢) 11V, 1 < erq. & ui? +
2.1 (x,t)" N ox N L2 (x,t)
loc™™? loc !
— P}
+ Ve IR ~% UN"LZ x t)- /’uQN 5— uNll .6)
loc™™? loc X
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2 —
S.JO + Ve -2m-E0-J0_S Const.
Therefore, by Murat”s lemma, [4], the inequalities (5.4), (5.5) imply that the
terms III and IV are also in the compact of Hzic(x,t). In summary, we have

shown that the right hand sides of (2.1), (2.2) lie in the compact of

-1

Hloc

(x,t), and, according to Theorem 4.2, that HuN(-,t)H is bounded

]

L (%)
(in fact, lu_l with p > 6 will do for our purpose). Hence we can
NP (x,t)
b4

apply the div-curl lemma [4] to the left-hand sides of (2.1), (2.2) and obtain
that (a subsequence of) uy(x,t) converges strongly in Lioc(x,t) to a weak
limit solution u(x,t).

Moreover, we claim that this limit is the entropy solution of (l.1). To
verify this claim we show that the right-hand side of (2.2), III + 1V, tends

weakly to a negative measure. Indeed, by (5.4) and (5.5b) the terms III and

IV} tend weakly to zero, and hence it is left to show that the term 1IVj»

) 3 o 3 3 _
Wy 2 e e i Ouaxr iy~ O+ R) gz iz ty  Q*tRy=1D

tends weakly to a negative measure. To this end we proceed as in [3, Section

4) and rewrite IV, in the form

~ 3 2 3 3 52
(5.6) IVZ = —S[QN -5-}? UN] - € H[H (RmuN).QNuN] + € 'a—xz' (RmuN)'QNuN'

Denote the three terms on the right of (5.6) by 1IVy), IVyp and 1Vj3,

respectively. By (2.11), IV,; tends weakly to a negative measure

(5.7a) wlim [IV21 = -e[QN %; uN]Z] 5_0.

Nooo
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If we integrate the second term, IVgs, against any C; test function
v(x,t), we find

9
[ [ pe1v,, dxde <e [ [ |55
X t X t

3
s (RmuN)-QNuN|dxdt <

b

Y 3
S.E“§§M o .“§§(RmuN)“ 2 .“QNuN" 2

’
Lloc(x,t) Lloc(x,t) Lloc(x,t)

and since R uy 1is a trigonometric polynomial of degree < 2m, this is less

than
(5.7b) [ [ poIV dxdt < earShr s2meNul® < Const. —pos — 0.
x t Lloc(x,t) Lloc(x,t) N+
Finally, for the third term
32 — 32 —
a3 = 7 (Ryuy)=QyCuyw) + € = Rpuy)=Quu = TVy3; *+ IVy3,
we have
52 _
(5.7¢) IIIV231 =e —5 (RmuN)-QN(uN—u)H 1 5
9x L (X,t)
loc
< e-4m2-“R uNH 'HuNJEﬂ < Const IluN - ul >0
— m 2 2 — : 2 i
Lloc(x’t) Lloc(x’t) Lloc(x’t)

and since € RmuN-QﬁG tends weakly to zero, so does the term 1V,3,,

2
- a L] =
(5.7d) ;ﬁim [Iv232 z € ;Z (RmuN) QNE 0.
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From (5.7a) - (5.7d) we conclude that the term 1V, in (5.6)--and therefore
that the right-hand side of (2.2), tends weakly to a negative measure. Thus,

by taking the weak limit of (2.2) we recover (1.2) for our limit solution

2

u(x,t). Consequently, the strong Lloc

limit of uN(x,t) = u(x,t) is

the unique entropy solution of (l.1) as asserted.
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APPENDIX
A. THE L1-LOGARITHMIC BOUND OF MONOTONE VISCOSITY KERNELS

We consider symmetric viscosity kernels of the form

ikx

| 0 (x) = Qe + e,

Ik%SZm 2m<%k|5N

with monotonically increasing Fourier coefficients. Then, the kernels which

correspond to Ry, =1 - Qy, are symmetric polynomials of degree < 2m

m

(a.l) Rm(x) = 2e ﬁ(k)coskx

s

whose Fourier coefficients are monotonically decreasing, compare (1,13),

(a.2) 1> R(k) + > 0.

Such kernels satisfy Assumption II above, as told by

Lemma A.l: There exists a constant such that

(a.3) ﬂRm(-)H 1 < Const.logm.

L (x)

Proof: The result follows if we can show that Rm(x) is majorized by

Const.m and Const. T;n-, for then we have
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IR, < | Const.medx + / Const . -,%T dx <
x|<—1- -1—<|x|<1r
(304) i 11} m—- —

< % Const.m + 2+Const.log |x| IF; £ Const. log m.

X==
m

Since 0 <R(k) <1 we have

IR ()] <2 e |ﬁ(k)| < b4m;

s

furthermore, summation by parts yields

sin)R (0] = | R(k)+[sin(k + 2)x = sin(k - Hx1| <

s

<ho+ |£(k+1) - ﬁ(k)[ o|sin(k + %—)X| >

1<| k%_(_Zm—l

and since R(k) are assumed to decrease monotonically

6 1
|R_(x)| { ———— < Const. R
m [sin()| []

which completes the proof.
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B. THE DECAY RATE OF THE FOURIER COEFFICIENTS—-REVISITED

In Section 3, we concluded that the quantities

Ek(t) = H(I—Sk)uN(-,t)n 9 , satisfy for k > m, the recursive inequality

L7(x)
(3.14)
2
BN 2
(5.1) By (8) < —— max E (1) +e °F LB, (5.
- T 2evkek” ¢
7L<t

In this section we complete the details for the solution of these recurrence

relations, and obtain that for k > 25«m  we have

85E_«N2 g+l 8SE oN2 s ,-s+l 2
(b.2)  Ey(t) < (——m)  Egt (14— ) et K,
T erkek e'Kek

i.e., (3.15) holds. For s = 0, (b.2) is reduced to (3.13); now assume that
(b.2) 1s valid for any k > 2Sem: 1in particular, for k > 25%len  we can

use (b.2) with k replaced by X K> 2%.n  and obtain that

272
8S*1E N2 s+ 85*1E N? s s 2
0 0 ~4 gkt
(b.3)  max Ek(T) < (————::—77—) -E0 + (1 + _—_°__7T') ve *Eqe
t evkek evkek
§§I—t
Furthermore, we have
85E N2 s+l 85E N2 s -s 2
t 0 0 -2¢4 “ek”t
(b.4) Ep(3) < (——) Ep+ (1L +——) e E..
2777~ evkek 0 evkek 0

Using (b.3) and (b.4) to upper bound the right hand side of (b.l) we find
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E 'N2
0
< — 3 °
2evkek
E N2

0 . (1

26/ Ko k2

(V)

s
8 EON

e'kek

2
+ e—Zek t.(

s 2
8 EON

E/E-kz

2
+ e"2€k t.(

1+

The first of the four terms on the right is less than (

the sum of the remaining three terms does not exceed

8St1E oN% s+l

(1 + 0
evkek

s+l

and hence for k> 2 m we have

s+1

s+1 8 E_oN

8 E -N2 s+2

«E

0
E, (t) < ( )
2k - S/E3k2 0

which completes the induction proof

0
—_—)
evkek

+ (1 +

of (b.4).
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